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" RESEARCH MEMORANDUM

THE LINEAR PERTURBATTON THEORY CF AXTALLY smiaic COMPRESSIBLE FLOW
WITH APPLIGATIGN 'To' THEE EFFECT OF cm@mssmn.m oN
THE PRESSURE CORFFICTENT AT TEE SURFACE OF A BODY.COF REVOLUTICK

By John G. Herriot .

“Four rela'bed. methods for the Etud:r of compressi'ble flow ‘by means
of the linear perturbation theory are discussed in detail foyr the case
of three—iimensional flow with axial symmetry. A general method which
ingludes the others is also dlscussed briefly. As an exemple of the
application of these methods, it 1s shown that, for s very slender body
of revolution in e uniform stresm of compressible fluid, the pressure
coefficient at the surface of the body 1s almost independ.ent of Mach
number, - A more accurate result for the caee .of a prolate spheroid,
which was given by ScHmleden and Kawalki, is dlscussed, and 1t 1s pointed
out thet this result may be used .to ad.van‘bage for most bodles of moder—
ate- 'bhiclmese., Experimental da.ta supporting theee reaul'bs are given.

mmomci-ron'
=_Bééaus-e of the high speeds of r_néciern‘-aircraft it 1s desirable to
determine the effects of compressibility ocn the loede which may be
expected on the various parts of the airplspe. Thls determination is &

. problem in three—aimensional flow, but over the wing at points not too *
‘clos&* to the tips or to the fuselage "the flow approe.ﬂhes closely to

two—o.imens...onal filow.. This fact mey be. used as a gulde in estima.ting
the &ffect of comressi‘biliw on. the pressires at the wing suxface.

“0n thb other: hand, ' the fuselages of most alrplemes are &pproximately
"ot:d.ies “of revolu'bion and conunq_uently, 1% is usoful to know the effect
of compressibility on the pressures g%, the sm‘fa.ce ‘of & 'body‘ of revo—"
JTutfon.. Since .the effect .of cc:npresei'billty on, the pressure . coeffic:[en{'.
et the surface of a body of revolutich is not the same as the'effect
on the pressure coefficient at the surface of & body in two—dimensional
flow, it follows that, at points of an airplsne which are cloge to both

-ﬁmmp.



the wing and the fuselege, the effect of compreesib:!.lity nmst be more
complex, being & combina.tion of the effects in two—~dimensionel flow and
in three—diwesnsional flow with axiel symmstry, Generally, at such points,
the effect of the wing on the pressure coefficient is greater than the
effect of the fuselage and, consequently, the compressibility effect
resembles more closely that for two—dimensional flow. . On the other hend,
at points of the fuselage far .frcm the wing the flow approximates to
axial flow and results approprie,té to this t,ype of flow are applica'ble.

For twc—d.imensional flow of a compressible fluid. paat an - airfoil
or other body,. the Prandtl-Glauert law (references 1, 2, and 3) states
that as the free—stream Mach number M increases, the pressure coeffi—
cient at the surface of ths body increases according to the expression

1/./1 — M2, For bodies of smsll or modsrate thickness and for Mach
numbers below the critical, this law gives, fairly satisfactory agreement
with experiment, provided the departures from potential flow are not
important. It has been sssumed by a number of authors (references 4, 5,
6, and 7) that the same lew may be applied to. three—dimensionel flow,
bu'l_; thie is incorrect, as ie ghown 'in references 8 and Q. and’ the present
report. In fact, for very slender bodies. of revolution it is shown that

the pressure coefficient at the surface of the body is neerly independént .

of the Mach number, being completely’ independent of the Mach numbér in
the limiting case of zero thickness. For the case of the peak pressure
coefficient (or velocity—increment ratio) at the surface of an ellipsoid
of revolution, reference 9 gives a more preclse result which is applicable
to many bod.ies of mod.era.te thiclmess as well as. to very slend.er 'bo 105.

There is a fundamenta.l difference 'be'tmeen “the preesure-—coefficient
variation with Mach nunber in two— and three~dimensional flow. The form
of the Prandtl-Glauvert law which is satisfa.ctory for bodies of moderate
thickness in two—dimensional fiow is independent of the thickness ratio
_of the body; whereas for extally symmetric flow the law for the pressure—
coefficlent variation depends strongly upon the thiclmess ra'bio of the

body S ,

The Pra.nd.tl—Glauert formula. for two—d;mensional ﬂow ie obtained. 'by
means of the linear perturbation theory of compressible flow in which the
departures of the fluid velocity from the uniform free—streeam velocity
are assumed small and their squares are neglected. It 1s clear that the
theory fails in the neighborhood of a stagnation point and that elsewhere

it is at best epproximate, the approximation deoteriorating, in the cese of ’

flow past a streamline body, as the thicknese and camber of the body in—
crease. There: ave a number of ways of applying this lineer pertur‘bation )

theory to the study of problems of compressi’ble flow, but.for any perticu—.

lar problem one.imethod mey be niére convenfent than the others. Three such
general methods are described in detall in reference .t. These methods,
as desoribed in reference lL', ere agplicable ~only - to- 'bwo—dimensional flow.
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A fourth method which is appliceble to both two— and three—dimensional
compreasible flow is presented in referencé 8. In all these methods the
properties of a compressible flow are dsduced by comparison with a cor—
responding incompresgible flow whose charecteristics are known. In the
application of the fourth method to the problem of two-dimensional flow
sbout a body or three—dimensional flow about a body of revolubion it is
necessary to teke account of the fact that the bodles in the correspond—
irg compreasible and Incoipressible flowe are of different sizes. On

the other hand, in method I of reference 4, which is, wnfortunately,
appliceble only to two—~dimensional flow, the size, shape, and orientation
of the body avre the same in the compressible and incompressible flows.
Consequently this method is more convenient for certain problems. It

is pointed out in reference k4 that the other methods presented there
possess certain advantagesfor other problems. It mey be expaected that
methods for the study of thres—dimensionml campressible flow anslogous

to those of reference U will be useful and convenient for the solution of
many problems. The present report describes three methods (msthods I, II,
and IIT) snalogous to those of reference IL for the study of axlally sym—
metric compressible flow by means of the linear perturbation theoyy.

The method of reference 8, desigmated method IV, is edded for completeness
and ite relation to the other methods 1s pointad. out. A general method
which includes the others is also discussed. In method IT the size,
shape, and orlentation of the body are the seme in the compressible end
incompressible flows, and consequently, this method is more convenient
for certain problems. On the other ha.nd. methods I and ITI mgy be more
convenient for other problems. Great cars must be exercised in using
methods I, II, end TIT as they are a.pplica.‘ble only 'bo very slender bodles.
Mathod IV im not 80 restrioted.. _

If method II is applied ko the problem of determining the effect of
compressibility on the pressure coefficient st the surface of a very
slender body of revolution, 1t ig found that the pressure coefficient 1s
independent of Mach number. For very slender bodieg this result is in
sgreement with that of reference 8, in which only an ellipsecid of revo—
lution 1s studled. It 1s Instructive to obtain the gems result by each
of the othser three methods, but, in order to do =0, it is necessary to
fetermine how the pressure ccefficient at the surface of the body varies
wilth the fineness ratio of the body in incompressible flow, It is shown-
in this report that, for & very slender streamline body of revolution,
the pressure coefficient at the surfeace of the body 1s inversely pro—
portional to the square of the fineness ratio. This disagrees with the
result used in reference 5 but egrees with that In refersnce 8 for the’
limiting case of = very slender body. The pressure—coefficlent va.ria.—-
tion for bodies of modera.te thiokness is alse d.iscussed
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The following symbols are used. 'bhroughout this report'-? | ) B : __f
b - _ static preesure ' - S E
p o mass aensity i
v L veloclity
x,y,.z Cartesia.n c‘oordina'bos b
x,r,0 cylindrical coor;iinates
| vx,vy,v cémponents of veloci’tv 111 x,y,z directions : N
"v:x . .ﬂperturbatzon velocita' in x direction (v V) o =
» W}r. i, - .ra.dial component of voiocity' . ) i i
& - ¥elooity of sound. in free stream B T -
q 'dynamic preseure <-9V2) S F-___
P pressure coefficient [(p—po)/QO] o ) ) _Z
M L Mach num?ber in free stream (Vc/ao) g _ _
¥ stream function -;- o _ o S ) _ -
h,h' - radll of stream surfaces _ A
21 1ength of body of revolu'bion | _ -
. .'-[-, _ . maximum ra.d.ius of body of revolution o - B ___:
= a - | angle of attack ) . _i
&,M T -elliptic coordinates N .
20 distance betieen fool of ellipse -

a,b semlaxes of ellipse
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e eccentricity of ellipse
Subscripts and Superscripts:

o  in free or undisturbed streem
1 Incompressible or low speeé.

¢  compressible

* at surface of body (appendix only)
THE LINEAR PERTUBBATI_ON THEQRY

Consider the flow of a compressible fluld.past a solid body, the
undisturbed velocity of the fluld relative to sxes fixed in the body
being a uniform velocity Vo along the axis of x, as shown In figure
1l; assume that the departures of the velocity from the wundisturbed
velocity V, are small. The changes in pressurs will then bs smell

compared with the undisturbed pressure and will be proportionsl to the
changes In density, the ratlo being the square of the velocity of sound
in the free stream. On & linear theory In which squares and prod.uc'bs
of small quantities are. negleoted. Bernoulli’s equation

fgppe+%vz_=cons_tan'b

for steady irrotational motion 'beccmes.’

" PPs P Pg 'y S .—(-l)
do 3°0V0 Y -

From equation (1) there is obtained

L - 'z
2 .
Po 84 Vo

]
=
i
o

(2)

The equation of continuity becomes

3 3v.
Yo &? *+ po(EE + t57 /) =0 " ' (3)
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If a velocity potential ¢ 'is introduced sa_.tiafying the relations

sz ‘a—? v @=v

L] . . ’ ax x—, ay y, az

and 1f equation (2) is used, equation (3) becomes the familiar eq_’ua'tion
3% B P 30 - - (h.)
B s + = O .. -
AR | _

where

; f o vbg
- p2 =1—M2==1--——-
i . * 'ao

2

The, transformation of this equation nto cylmdrical coord.ina.tes x, ¥,
e yielde . _ s e e .
ara = o 72 %92 >

‘Tn thie report the flow is assumed to possess axisl symmetry about the _
x-axis unless otherwise stated. In this case 3%/362 = O and equation
(5) reduces to SRR S

o F 1
——§+'5r—2-+;-§£-

2

B (6)

" A stream function ¥ ‘may now be Introduced writing

: T1d
PVx = 0o 57 Ve =~ Pp

HIH
wig

From this definition the followlng approximate relations are obtaiﬁed:

..}_.a_‘f,v (1—M2~—1)<l+——x)=1+132-x ('})
Vorar °o Vo
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Vorax= 2% Yo -

The points for which ¥ 1is consfa;zt constitute & surface which mey be

caelled a stream surface. The streem surface is In turn made up of
streamlines. . - . ‘ .

If a solution for inccmpressi'bie flow' (8 =1) is knowm, solutioﬁs

for values of B less than one may be deduced in seversl ways when shock

weves are absent and the assumption of small departures from a uniform
velocity is approximately correct. '

Method T

For three—~dimensional flow with axiel symmetry let:
@ = Vox + £(x,r) (9)

be a solution for the veloclty potential for incompressible flow
(B =1) and let

¥ = }a-vcra + glx,r) (10)

be the corresponding stream function so thz:b the following relations
must hold true:

e (x,r) == gr(x,r), f (r.,r) = —-= gx(x,r) | _(ll)

It may be noted that g(-w,r) = 0 since the flow is undisturbed at
infinity upstreem. It is assumed that the limit of g(x,r) as =
tends to zero is finite and not zero for points x of the body not

close to & stegnation point. (This assumption is correct a:b least for
flow about a Rankine Ovoid or prola.te spheroicl )

*#_ denotes the partial derivative of f(x,r) with respect to x:

namely, 3f(x,r)/dx apd f,. = 3f/dr. In equation (13) f£.(x,pr) 1is

. the value of £, at (x,Br) and not the derivative of f£(x,fr) with
respect to r. )
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Then & solution of 'equatiori (6) Por B<l is

P = Vox + 5 £(x,pr) (12)

The longitudinal end redial componente"ef-ve_locit& are
LR Y . l . P A ’ .

VI = Vo + -E.f‘x(x,ﬂ_r), vr = _;I_E'r(x,pr) (13) o

From equations (7),. (8), and (11) 1t follows that =

vtrg"l"' P f(x, )-1+-—]:-—gr(x,Br)

and o
1 v 1 1
T 3x T T, TrmP) = g ex(m )
Then the stream function is ..
¥ o= %Vora % g{x,pr) ; ] (1%)

If the bedy were removed, the veloclty a.t all points of the fleld
would be 7V, and the velocity potential and stream function would be,

respectively, Vox and -12=V°r « The streem surfeces would be right

circular cylinders with axes along the x-axid, The effect of the body
i3 to distort these stream surfaces. Let h dJdenote the radius at =x
of a given stream surfece with the body present. If the body were
removed the radius of this stresm surface would be h', so that
h-h! 18 the distortion of the stream surface cauped by the presence
of the body., If r = h 'is substituted In equation (Lk) and 1t is
observed that V¥ hes the same value whether the. body is present or
not, there ie o‘bta.ined.

¥ = %v_oha + %_ g(x,Bh) - éq-o(ht )2—. .

' . - PR -
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For velues of h and h®! vwhich are not too small this équation yi_elds
approximately .

wont - 280 _  glx,ph) (15)
B‘V’O(h+h' ' VoBh

The distortion of the stream surfaca in the case of incompressible flow -
is obtained by setting B = 1 1n equation (15). If the points (x,r)
in the compressitls flow and (x,Pfr) 4n the incompressible flow are
called corresponding points, then it is msen at omce from equation (15)
that at points far from the body the distortion of the stream surface in
the compressible flow is the same as that at the corresponding point of
the incompressible flow. To find the.relgiion between the distortions
near the body (i.e., near r z 0) 1% is only necessary to set ¥ = O -
in equation (1k4).- Then, since g(x,Br) 18 nearly equal to g(x,0) at
points of a very slemder body not close to a stagnation point it follows -
that the radius of the zero stream gurface at any- x in-the. compresaible:

flow 1s B~% times the corresponding radius at the seme x in the in—
compressible flow. It should be noted the.t the d.istor'bions near 'bhe
'bod.y d.iffer from those far frcm the ‘body S

From equation (13) it is geen that the incraa.ee in the longitudinal
veloclty at ahy point in the compressible flow is l/B times the incréasse
at the. correspondifig point In the incompressible flow, :Near the ‘body the
longitudinal veloclty is nsarly independent of r and conseq_uently nedr
r = 0 the longltudinal veloci*by increase in the compressible flow is
1/B ‘times its value at the “Same point in “the incompressible flow,
Becsuse of equa.tion (1) the same relations are true for the pressure -
coefficlent., “Also from equation (13) the redisl velocity at any point
in the ccmpressible flow is the same as at the corresporiding point in
the mcompressi'ble flow but no general compa.risons cen be glven near -
r=0 because 'bhe ra.d.ial velocity depends upon r even for small r:

L
- .

Msthod._ I

Corresponding to the solution given by equations (9) and (lO) for
the incompressible flow

9 = Vox + £(x,8r) -
may be written in place of eguation (12) for any B < 1. The longitudinal
and radlsl componen:l:s of velocity are

Ve =v + 1 (x,Br), v . Br (x,ﬁr) L
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| The stream function.is found to'be :

. . -
. . . N . S R .- R R S
O T A RV S N _' - PR a ‘- i ’

B - t\if ;!'-Vorzll-.gJ(J_::,:B-:.:) - P A

. - - 0 . ‘
* - . R 1 . LI

'I’ha d.istortion of a. s'bream surface is approxima.tely

‘:.!,ﬁ.z..-?'..‘”.. : v "h—l‘lt 5 (I,Bh) - _(I, 311) o ';_.', _i_- . '_- l'__ w0
Pt R _.Yq(h"_:h') AL = I

. e . . 3
Coetm rtene et . . .,

R - S .‘"', A E R RN PR . v N

Lo Lo .. - i ©R

% . [P YU N - P P -

It follows that the d.isﬁortion of the strea.m surface a.t amr pointv -

far :from the body in' the' compregsible flow is B, times the distdrtion”
of-the &tiream sirface at the corresponding 'poin’c in 'Ehe incompressible
fléw. The rediud’ of the zerc stream surface at any  x " 1s the same 1n
the compriessible and mcoﬁ;oreseible flows or, 1n otlier words, the size,
shape; and orientation of the beody are the ‘same in 'both flows., The .. .:
‘pressure coefficient exd the increase in the longitudinal velocity at .
eny point 4n the compressible flow are the same as-at the correaponding

point:in the incompressible flow. Néar r = O +the pressure écefficien*b .

and the increase in the longitudinal veloclity eare the same In the com—

pressible and 1ncompreaaible flows. = The radlsl velocity at eny point o

in the conr_pressible flow is B - times its value at. the correspond.ing
_ point in the mcompressi'ble flow. ) _

"It mey be mentioned hero that Wiesels‘berger (re:ference 10) dses a
method. to study comreasible flow which is essentially iethod II of ‘the .
present report,  although he does.not attempt -to formulate any general
meothod; however, he starts from a slightly d.ifferen"b ‘point of view.
Instead of assuming the velocity potential to be the same at .corre--.
spoqd,ing points of the compresaible and mcompressible flows; as 'done’
in the present report, the condition is imposed -that the. body shapes
shall be the sams in both flows and it is concluded that “the veloclty
potentiale must be the same at corresponding poi!.nts.

Method IIT -

lCoi'z‘eepon.éling 1;6 the solution '-givez_i byequa.t?ions (9).'-&_nd (20): for

the incompressible flow

. _ T P g -v-’ox'-*' f(I/B,r)

#ay be written in- place of equation (12) for a.ny [s< 3_The '-lﬁn;s.i{-.'iza"""

and ra.d.ial components of veloc :Lty are
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_v' = v + -é- fx(x/ﬁ,r), = %, (x/8,r)

The stream function is found to Ye = -

¥ = 2’-Vcrz + pg(x/p,r)

The distortion of a stream swurface is approxima.tely

Eﬁg(x/ﬂ h) pe(x/8,n)

B=h? e e —
2' Yg (h'l'h‘) ’ Voh

It follows that the distoprtion of the stream surface noear =x = x; .
end any r in the compressible flow is B +times the distortion of

the stream surface near- x = x;/B and the seme r in the incompressible -

flow. The radius of the zero stream aurfa.de at eny x in the compressi-—
blg flow 1s ﬁﬁ' times the correspond.ing radius at x/B in the incom— -
pregsible flow._ The pressure coefficient and the Incresse in the longi—
tudinal veloclty at x = x3 snd eny r Iin the compressible flow are
1/8 +times their values at x = x;/B and the seme r in the Incom—
‘pressible flow. The radial veloclty at x = x3 and any r in the
compreseible flow is the sams ag at x = x2/B and the same r in the
incompressible flov. :

“Method IV

A fourth method, which ig called an extension of the Prandtl rule,
ig given in reference 8. It is expresseé. in the following concise form:

The streamline pa.ttern of & compressible flow to be calculated can
be compared with the stresmline pattern of an incompressible flow which
results from the contraction of the y— and z—exes including the pro—

file contour by the factor B = /1 —M® (x-axis in the direction of
the free stream), In the ccmpressible flow the pressure coefficient
as well as the incresse in the longitudinal velecity ere greater in the

ratio 1/8° = 1/(1-M2) end the stresmline slopes greater in ths ratio

© 1/ = 1//1 —M® <than those at the correspond.ing points of the equiva—
lent Incompressible flow. _

- This method is applicable to -both two—=.and.three—dimensional flow.
The proef given in reference 8 differs from the proofs of metheds I, II,
and TIIgiven in the present report, but for the case of axislly symmstric
flow the methods of the present report mey also be used. In this case

—— o — — =
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1
Q =Vx + — £(x,8r)
ﬁ2

is written in place of equation (12). The longitudinal and radial
components of veloclty are N B

Vx =‘VO e _EJ_-‘Z—nfi(x,Br), : vr‘ = % fr(xs pr)

The streem function is.’found: to be.: -

¥ = -;‘-Vo'ra.'—r ;1'2-'8(36,81‘)_ '=-El,‘,—[%‘fo(ﬁr)2 + S(x’»sr)]

From this 1t 1s seen that the polnts in the incompressible flow which
correspond to the polnts of a .single stream surfece in the compressible
 flow, themselves lie on a single stream surfaceé in the incomprossible
. flow. In other words, if the compressible—flow field is transformed
by multiplying the r—coordinate of each point by 8, then streem
"surfages in this field are mapped-into stream surfaces in the
incompressible—flow fleld. Thus, the two fields are entirely gimilar
and. no approximation ie involved in comparing the shapes of the bodies
or radll of the streem surfaces in the two flows; whereas in methods I,
.II, and IIT the comparison of the body shapes d.epends on an approxi-
mation end beoomes exact only in the limiting case of a body of zero
thickness, Thus, method IV may be expected to be the most acourate
of the four methods, especailly for bodles of moderate thickness. Of
course, the thickness of the. body is still limited by the assumptions
of the linear perturbation theory. In this commectlon it may be
pointed out that for many problems: one of the other methods may be
preferable from the standpolnt of conven.isnca » but oare must be
exercised in their use.

Gene:'cr'a.'l M_ethédl o

It 1s now possible to glve a general method. which includes the
preceding nethods a8 Bpecial cases.

Corresponding to the solution g,-iven by eq_uations (9) and (10) for
the incompressible .flow a potential funotion

P = Vox + rMaf(rax,Aar) - (i6)

" lThs genersl method as outlined in this section is due to
Mr, Dean R. Chapman of the Ames feronautical Laboratoiy.
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1s desired. The constants A1, Ap,Ms must be chosen so that equation
§16) satisfies equation (6)}. If equa.tion (16) 18 subatituted in equation
6) and it is recalled that equation (9) eatisfies equation (&) with

‘B =1, it is easily found that

37\,?_ = 7\3 _ . . (17)

i8 o negessary and sufficient condition that squation (16) be 2 solution
of equation (6). The longitudinal and radiel components of velocity are

Ve = Vo + hiha fx(Aexhar), Ve = Ahas fr(Aax,Aar) (18)

The stream function may be found as in method, 'f. From e@atims_ (n,.
(8), (11), and (17) it follows tha.t -

1327\1 ha ' Aihas

. a[, L
"_‘"_;'; S—r Vo (th,RsI‘) = l + 7\2 A Er(x2x.’7\sr)
and
Y W M s
‘7.-;1,— g B l —==2 f, (?\21;7\31‘) = "“"8;(7‘21:7\31')

Then the ‘gtreem _fund{-;ioﬁ" ia

T ¥

. - A ) e N - )
¥ = %‘Vora *i 8(Azx, Agr) I (]79) -

Since any two of the three- constants 7§l, Az, a.nd. 7\3 can’ be chosen
arbitrarily, there is a double 1n.finity of methods‘l i

In genersl, in transforming from the compressi‘ble-—flow field .to the
Incompressible—flow field, stream surfaces are ‘not mapped. into stream
surfacea, If, howsver, it is desired that stresm surfaces map into
stream surfaces, as in methed IV, then an additional gondition must be
imposed on the A. Equetion (193 may be rewritten

g
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In order that stream surfaces map into stream surfaces 1t is necessary

and sufficient that - . . .
s lf s . (20)

If equation (17) 1s used, it is seen that equation (20) can be replaced
by ': - - . .- - - T -, - P o0 .

SRR NN . = o (1)

There is thus & single infinity of methods satisfying both equations
(L7) and (21). o '

If in addition it ls desired ito have the x—coordinate the same in
both flows, it is necessary to choosé Az = 1 and there 15 then only
one- method satisfying both equations (17) and (21).  From these equa—
tions it follews that Ay = 1/B® and Az = $. This is the same as
method IV which hes already been discussed. It 1s easily seen that for
methods I, II, and IIT equation (17) ie satisfied but equation (21) ie
not. - CoTme - o : R :

It should be pointed out that great care should be exercised when
uping methods for which equetion (21) is not satisfied. For such methods
the comparison of body shapes is valid only for very slender bodlies.
Methods for which equation (21) is satisfied are not so restricted. It
will be useful teo discuse in more detail the general properties of meth~
ods for which both eghations (17) and {21) gre satisfied. From eque—
tions (18) and (21) it 1s seen that the pressure coefficient and the
increase in the longitudinal velocity at any point in the compressible
flow are 1/B2 times their values at the corresponding point in the
incompressible flow. The thickness ratio of the body in the compressible
flow i8 Xa/A; = 1/B times the thickness ratio of the body in the in—
compressible flow. Alsc the streamline slopes in the compressible flow
are greater in the ratio M)y = 1/B than those at the corresponding
points of the incompressible flow, . o ¢

It may be noted that, If the general analysis is a.ppiied. to two—
dimensional flow, equations (17) and (21) are unaltered; however, the
- gtream function is given by - Lo e o -

. T . v P . [ R

C o = Vo 4 Bhag(AaX,Agy)

e - o - . s ..
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instead of by equation (19). It is easily seen that ths methods of
reference 4 satisfy equation (17) but mot equation (21) and hence stream
surfaces in the compressible flow do not map. in‘bo stream surfaces in the
corresponiing mcompressi'ble flow. _

I

VARTATION OF THE PRESSURE CCEFFICTENT WITH THE
FIKENESS RATIO IN INCOMPRESSIBLE FLOW

It has been shown that in methods I, III, and IV the fineness ratio
of the body 1e not the same in the compressible and incompressible flows,
Consequently, in order to study the effect of compressibility on the
Pressure coefficient at the surface of a body of revolution by any of
these mothods, it is necessary to determine how the pressure coefficient
at the surface of the body dependas on the fineness ratioc of the ‘body in
the case of incompressible flow. ’ '

Suppose the velocity potentia.l and stream fungtion for the flow
gbout a slender streamline body of revolution placsd in a. unifom stream
of inccmpressible 1luid. are, respectively,

cp =:‘V°x-l;:;."(-x;r) e T | (22)
: ﬂr = —]évoz;?-+g(x,r) ; : - (23)

Ioes, Tk R -

so that the foll_cn:ring.,_ r_eJ_.a._tions_ nust h@ld true _

i ¢ (x,r) -' &_L.(x,r)', f (x,r) = -—-gx(x,r)

R oL - B T : . . -

As before it may be ncted. that, (~oc,r) = 0, and sgain 1t will be~
assumed thet the limit &fF r? as tend.s to zerd is finite and
not zero for points x of the 'bcdy not close to a stagnation point.
Then the veloclty potential and stream funchkion for the floy about a
second body obtained from the- firet by nrultiplying the la.tera.l dimen—
sions ‘by 7 ere a.pproxmately Lo, TS

o = V% + n°f(x,x) - _(au)

i 2 2
¥ = Vor +n s(x;r) (25)
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This 4ig-easily seen by copnsidering the stream functions of . +he two flows,
.- noting that ¥ = O on:the bodies, and that g(x,r) is approximately
.equal to. g(x,O) since r -1is amall s S -

If P, end Pz denote the pressure coefficients ‘for the same x
at the surfeces of the respsctive bodles whose radil are r; and mnr,,
1t follows from’ equa'bions (1), (22}, and (24) that

'Q(V'x)l o Qfx(x,rl)
3 = = = . - v
o V.C L Vo .
- P . 2(vig)o epai’;(x,nr;,)
had 2--g = v - L.
oY Yo

Henoce these equations give the approximate relation

. '.Eg (le)a/vb . naf;(x,nrl) i 'a: _ %(eé)
Py (V'x)lfvb _ fx(x,r1)

B e - . . . R .

This approximation 18 valid for a very slendsr body since glose to such a
body the longitudinal velocity increase fy(x,r) 18 nearly independent of

r. It is true that for a prolate spheroid fx(x,r) becomes logarifimi~
. oally infinite dut 1t is still true that the limit of £ <(%,ar) [£o(x,r)

48 unity es r tende to zero; this is sufficlent to prove equation (26)
for the limiting case of zero thicknass. ) -

On the other hand) “the relation of'equation (26) may not be the
most satisfactory one for bodlies of moderate thickness, Approximate ex—
pressions for the pressure coefficient and velocity increass at the eur—
face of -a prolate spheroid are given in ths appendix " Let the subscript
1 vefer 'to a prolate spheroid of thickfess ratic &/l and the subscript
2 refor to a body'of thicknéss retic nt/l. If terms of. order (ﬁ/l)a
end higher are neglected in equa.tion (A6) there 1s obtained.

(Ppax), IL(V )m] /‘Vc —(1:/1)2 J,cas(t/l)‘2 Y Tesem) |

Vo

(Pmax) [(v x)max]e/v ~(nt/z)21qg(nt/t)2 E '2 ~ log ix?.l (27)
2
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If terms of order (1;/2)’a a¥e- retaided bt "berms' of nigher order are neg-
lected in equation (A6) there is obtainad. N

(Prax) [(V’x)max]gfvo - gcmﬁ)zlcae:(nt./ii12 ?(1*1682)'(nt/7')_2-_-

(Bnaz); 'ch )WJ ! %(@{t)alés(?_/;}e *_(l-:-los?).(_ﬁz_?--)'g"

en? i1+ losn . L _ - (28)
- 1og(t/z)2 * 2 (1—1032) . ) :
"In applying these relatlions to the study of compressible flow by means of
method IV it will be necessary to take..n eguel to B. .Corresponding to
e Mach humber of 0.8, B is 0.6. With n = 0.6 the approximations given
in equations (27) and (28), as well as_the true values of the left members
for a prolate spheroid, ere plotted as'a function of "t/U in Ffigure 2.
In addition this ratio is plotted in figure 2 for the NACA 111 serles
(reference 11) of bodles as well as for a series of bodies given in ref—
erence 12. TUnfortunately these series of hodies are not related to one
snother so ‘that ohe body msy be obtained from another’ of the series by
miltiplication of -the vadil by & fixed factor. Howevey the.distortion
is not great. Straight lines correspending to n' ='0.6 and n2 = 0.36
are added to figure 2 for. comparison, It appesars.that-for small valuss of
/1 equation {28) gives the best approximation’ for the prolate spheroid;
whereas for large values of. %/l -equation (27) is better, but neither is
of much velue for values of +/1 in excess of 0.30. The approximation
given by egquation (28) appears to be most satisPactory for general. use
but 1ts application should be restricted to bodles whoss thickness ratios
are less than 0,30. It should be noted that as .t/1 . tends to zero the
right members of equatlons (27) a.nd. (28) both red.uce to n? in sgreemsnt
with equation (26). 1 . .

VARIATTON GF PRESSURE CQEFFICIENT WITH MACH
NMBER TN cmmssxam FEOW- | -

Coneider a slender streamline body of revolution of length 21 and
maximum redius + . in a wmiform stream of compressible fluid. Suppose
that the undisturbed fluid flqws in the direction of the positive x—-axis
and that the hody -is placed .with its axis slong .the x—axis and its cemter

4
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at ‘the. origin a8 shown in figure 1, "Deio;io by Py ; tﬁe{_'ore'sswe coeffi-
cient at any point - x- of the surface of the body, ILet Py be the pres-—

sure coefficient a.'b the same point of the surfa.ce of' the .same body u.nder
the assumption that the f‘luid. is incompreasi‘ble.

Me'bhod JI is the most ccmveniont method. to use, for the size, shape,
and orientation of the body are wunchanged in the corresponding incompressi-
ble flow. It follows at once that Pe = Py or, in other words, that the

rressure coefficlent 1s ,'mdepend.ent of the Ma.ch number.

In using any of the cother methods, it is nocesse.ry to take account
of the chenge in the shape of -the body in passing from the campressible
flow to the corresponding incompreseible flow.___ Since methods I and IIT
are valid only for very slender bodies the appropriate presstme—coefficient
‘veriation vith thicknegs is given by equation (26), When method I is used,

.the corresponding body in the incompressi’ble flow 18 of length. 21 .apnd
meximin radins 6% so that Py = (1/8)(BP1) = Py, Again, if method ITI
18 used, the body in the incompressible flow 'is of length 21/B and maxi-

mum re.dius tB"ﬁ_' go that the thickmespg ratio is decreased in the ratio
. 5. It follows that Py = (1/8)(8Py) = P;. Finally when method IV ia
used the body in the incompressible. flow is of length 21 and maximm
radius’ 48 so tha.t‘ Po = (1/[32)(BEP1) = Pj_. SR
_ Method.s I II, a.nd. III are, vqlid on.}y for very slend.er 'bod.ies not
only bécause some distortion is 1ntroduced in the comparison of the body
.shapes but also because the slight vnriatien of the pressure coefficient
with d.istance from the axis of the body is neglectedwhen this distance’
is small, " This variation with dlstance must be gonsidered in order “to -
avoid inconsistent results’ if the closer’ approximations of equations
(27) end (28) are-used in conjun¢tion with methods I, IT, and III.
Since this is '.lnconvenient to do and since method ]_J_I g_s___not subJect
to these limitations, 1t is preferablé to use the latter method when
the closer approximations given by equations (27) and (28) sre used,

- If equatlon (27) 1s used togother with method IV it is easily found
thet LS _: B ' )

' (Pax)g [(v x)m! /Vo 1  log 8

(Pms.i)i iy "(V'x) ]Jv ) _ * 108(1;/?-)2 g (29)

whereas, if equutj.on (28) is. ueefl, there I.ts ohta.ined g
! (5 D0 vy LA T 1 a2’ -
0 { ml (30)

(Pmax)i [(v X pax 1/v Th 1oz(t/l)=+a(1~1oga)

Il
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Equation (29) ia.the result of. referenqe 8 a.ucl eqpa.'bion (30) is the
asymptotic first a.pproximtion of refqrence 9. The result qf equa.tion ‘
(30) is shown grephically.in figure 3. 3 _ _ _
Figure 2 shows that eq_ua.tion (30) is likely to 'be mos'b su:!.ta'ble
for general use although for thicker prola.te spheroj_ds equation (29)
would ‘appear to be better. . Nelther of these equetions should be used
for bodies whose thickness. ratios exceed. 0,30. TFor thicker bodies the
more exect results of reference 9 may be used., For vexry slender bodies:
the right members of both equations (29) end (30) reduce to unity in
egreement with the result previously obtained. In the application of
equation (30) to bodies othsr than prolate spheroids, +/i may be
chosen as the actual thickness ratlo of the body or as the thickness
ratlio:of the spherold having the same peak pressure coefficient as the
body, of -t/l may be chosen in fcme other epprdpriate manner. - This un—

certainty in.the choice of - t/ 1 will not materia.lly a.ffact the results
cbtained from equation (30). e L

) Referencee 8 a.nd. study on.‘,,y- thq maximzm Velocity inorement, “but
if equaticns (A9) end.(410) of the appstdix are used, apnd terms of order:
(t/1)2 are retained, then it is easily shown that a.'E “the mface of & -
Bpheroid ) : _ _ _ Fa

L "'(V'x')&,}ﬂ'o:”:.i ﬁ 1eg B . -_ . C )
I .(V'x)ifva o log(t-/t) + 2{[ I-(x/l.) }-1032}
= 196 - (32)

;;gl 1°8f*=/1)2 + (x/l)a/u—(xma] +a-alosz |

It shovld. ’be notsd. tha.t in contra.st to eq_ua.tion (26) i3 /'Pi a.n.d. '

[(v'x), /V‘olf E(?’x) 1/Vo] .are alightly different because terms of higher_

order have been retained.  OFf courde ‘equations (31) and (32) are valid
only over the central portion of the spheroild and are invalid near the
stagnation points. When x = O equations (31) and (32) reduce to .
equation (30). GCenerally it will be sufficiently ascura.te to use equa—

tion (30) in place of equa.tions (31) and (32) .

| 'ESMATION QE_‘ cRch_I_. MAG}'_I-’MERS

The critica.l Ma.ch mnn‘ber of a.ny body ca.n be determined frcxn i'bs
low-speed _pebk presme coefficient provided. $he variation of peak
' pressure coefficient with Mesh: ‘nunber -1’ kmown.. - If equation. (30) is
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used to estimate this variation for a body of revolution and if in thie
equation t/l 1s chosen as the thickness ratio of the prolate spheroid
having the same peak presdure-coefficient as the body under considera—
tion, then the solid curve of figure Lk is obteined, If the law for very
slender bodies is used, namely, that the pressure coefficient is inde—
pendent of Mach nnmber, ‘the dashed curve of figure L is cbtained. The
curves appliceble to two—dimensicnal flow cbtained from the Prandti—
Glauert and Karmaaneien (reference 5) lewe are ehown for comparieon.

<

EXPERIMENTAL RESULTS AND DISCUSSION

1-.:.—..’- B . - - - - -\- =

In order to determine whether the results of the preeent paper are
in agreement with’ experiment, a considerable’ afmount of experimental pres—
sure dete was gtudied. The fuselages of many alrplenes are approximately
bodies of revolution but most data have been taken with the wing on the -
Tuselage. A%t stations neer the wing .the pressure coefficlent is more
influenced by the presence of the wing then it ie by the fuselage. Con—
sequently, date on the fuselage without the wing or on the fuselage far
frem the wirg are needed

Preeeure data fer a fuselage without a wing or Sther protﬂberancee
were avallable for only one alrplane which, in this report, is designated
as airplare A. These data were teken in the Ares l6—foot high—-apeed wind
tunnel and ocoryected for tunnel-wall effects, the corrsadtion to the Mach
number being 1n the neighborhecod of 5 percent. This fuselsge is & body
of revolutien. Back of the maximum section, the regular fuselage wae
replaced by a conical shape as ehown in figure 5. The length of the model
“tested was 135,0 inches and the meximum thickness was 37.56 inches, glving
a fineness ratio of 3. 595 The locatione of the preesure orifices are
also shown In figure 5. The mcdel was suppo¥ted in the tunnel by means
of two strits connected to it about 459 on either side of the bottom
verticel center line of the fuselage. Bince the date frcm the lower
orifices might be influenced by these struts, the variation of presoure
coefficient with Mach number is shown in figure 6 only for the orifices
on or near the top of the model. The data of orifices T-2 and T3 mey
be influenced by the presence of two holes 1n the fuselage near tke nose
which were to simulete gun ports. For purposes of compariscn & +/B
curve is added.in esch case. For orifices T-7, IR-T, T 8, and TR-3 &

. curve showing the theoretical varlation of the peak pressureé coefficient
as given by equaticn (30) is mdded, This curve 1s seen to lie very close
to the 1/8 cwurve &ppropriate to two—dimensional flow. It can he seen
that for the orifices T=7, TR—7, T-8, and TR-8 the experimertal pressure
- gcoefflclents rise slightly with Mach number but less than predicted theo—
retically by equation (30)." At the other orifices the pressure coeffi-
cient rises lese rapidly and even'falls at some of the orifices, chang—
ing eign in one or two cases. This is not predicted by the linear theory
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at all. A more accurate and detailed calculation carried out in reference
“13 for a particula.r body ) hcwavor, reveals such 'beha.vior on soms parte of
the ‘body. -~ ) _ . y

The other a.va.ila.'ble d.a.ta wore for a J.uselage with wing I'b wes con-
sldered that pressure data for orlfices near the nose of a long Puselage
would be little affected by the Erasenoe of the wing. Near the wing, the
effect of -the wing woula. be predomina.nt. . i B

Figure T Bhows the: fomard. portion of the Lu.selage of a.irplane B
together. with the position of the wing.  The fuselags 1s nearly & body
of revolution, but the upper svrface 1g compliceted by the presencs of
the pilot's wind.shiela. whereas the lower surface differs from theé Yegu-
lar  shape only by having e flat pombardier's window very nser the nose.
The locations of five pressure orifices on the lower surface of the -
fuselage on its ver-bica.l centér line are also shown. These orifices -
are all to-the: rear of the 'bOm'ba.rdier 8 window on that portion of the
fuselage .which a.:pnroximtes most closely to & body of revolution. Figure
8 shows the variation of pressure coefficient with Mach nurber at these
five orifices. Thebe data were teken in the Ames 16-Foot high-speed- wind
tunnel and were not corrected for tunnel-wall effec'bs. It 1s seen thdat.
‘at those orifices farthest from the nose the pressure coefficient is re-
marka.‘bly constant a.s 'E.he Mach nmber 15 cha.nged.-

Figure 9 shows' 'bhe fuselags s wing, and canopy of & l/‘j-scale modol
of airplans C together with the locations of some of the pressure orifices.
The forwsard portion of this- fusela.gs 1s approxima.'bely a bedy of revolution,
the nose duct -having been replaced by & plug. Figure 10 shows the varia-
tion of the pressure coefficient with Mach number at & number of drifices,
the date having been teken for the wing and baslc fuselage bdut wlth the
oonopy removed. ' A number of orifices .are not showm in figuwre 9 as it is :
drawn wlth the canopy on. -But the poaition of each orifice for whlch
data are glven in figure 10 1a described by glving itas distence. In inches
from the nose of the fuselage with plug. These data were cobtalned in.the
Langley 8-foot high=spesd wind tunnel. It is- seen that, at those orifices
which are well forward of the wing, the.pressure coefficient is nearly =
constant or Increases 'sldwly wilth increasing Mach number, 1is curve re=
maining below the 1/B ocurve; but near the wing the increase of. the pres-
sure coeffliclent ls mich moxe raplid and at several orifices the increase
is more rapid then I/B. At such orifices the effect of the wing lg:
gregter than that of the fusela.go Moreover the flow over the wing j.s
more neerly two-dimensional and so the 1/B law would be expected do:
hold. The critical Mach number of the wing is 0.68 and this may a.ccount
for the drops in some of‘ the curves above M = 0.70.

I'b we.s consid.ered tha.t in ‘the cases of airplanes B end G the bodles
tested did not resemble pure bodies of revolution sufficiently closely
to warrant a compa.rison of the test results with the thooretica.l results
of equation {30},
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The Kollsman pitot-static tube F.S.S.C. No. 88-7-2950 is shown in
figure 11. This tube 18 a body of revolution, and a short distance back
of the nose its cross section remains consteant for a considerable distance,
the dismeter of this conetant portion being seven—eighth inch. The static
orifices are located near the center of this length of constant cross sec—
tion and are 5-1/16 inches from the nose. Figure 12 shows the variation
of pressure coefficient with Mach number at the static orifices of this
piltot—atatic t.ube. These data were obtained in the calibration of this
instrument in the Ames 1— by 3&—:{‘0015 high—speed wind tunnel and corrected
for the effect of tunnsl blockage. The tunnel choked at a Mach number
of 0.952 and at Mach numbers close to this valus the tunnel corrections
are unrelisble. For this reason the sharp drop in the curve occurring
at Mech numbers over 0.9 should be disregerded. For purposes of com—
perison a 1/ curve was edded to figure 12 as well as a straight lire
to indicate the theory of the present report for very slender bodles.

In addition, e ocurve hes been added showing the variation of pea.k pres—
sure coefficlent as predicted by eguation 30) for a body of fineness
ratio 20, this being the fineness ratio which appears appropriate to
the model tested. It 1s.peen that the pressure coefficlent 1s nearly
constant mcreasing only very slowly with Increasing Mach number. Thse
increase is very small and is not fa.r from that predicted. by equa.tion
(30) but is far below 1/8. S _

'I‘he pressure distributicn on the fuselage of a mid.wing airplane
" hes been studied by Delenoc. (See reference 14.) It was found that the
peek negative pressures on the fuselage occurred near the wing and were
mors dependent on the wing than on the fuselage. The variation of thess
peak pressuree was in good agreement with the 1/B law, but at other
points on the fuselage the preesure—coefficient variation does not
. follow thie law. These conclusiona are in agreement with the data shown
. in figure 10. . It appeers that near the wing where the peak pressures
. ocour, thoe flow is nearly two—dimensiona.l and the 1/B law gives a good
ploture of the actual variation of the pressure coefficient. But at
pointe farther from the wing the flow is more nearly three—dimenslonal
end at such points which are not toc close to ‘a stagnation point the
pressure coefficlent should be consteant at least for very slender bodles
according to the theory developed in . this reporti. For scmewhat thlcker
bodies the pressure coefficient ‘mAy rige. slowly with increasing Mach
. number and equation (30) gives a formula for this increase. The ex—
perimental data of Delano show séveral different types of pressure—
coefficient veriationt. The type may depend on the proximity of the
wing and may result from wing a.nd f‘usela.ge pressuree following different
lawe of variation.

_ It is aseumed by ‘Robinson and Wright (reference 6) that the veria.tion
of the peak pressure coefficient with Mach number can best be represented
by the 1/B law for three—dimensional flow as well as for two~dimensional
flow. In view of the foregoing discussion thie would appear to be Justi-—
fied, provided the peak pressure ccefficient occurs near the wing, and
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this is usua.liy the case- -at least for a wing_ and fuselage -combiﬁa.tion.
Ko attempt is made in reference 6 to predict the presstme—coafficient
va.ria.tion a.'b points o'bher than where the peak occcurs. g

It a.ppears that, for those 'bod.ies ‘which a.pproximate closely tq
bodise of revolution and for points not too close to a stagnation point,
the pressure coefficient is nearly constant or increases slovwly with
Mach number, It canfiot be sajd that the pressure cocefficisent is exactly
constent in all cases, as proved in this report for a very slender body
of revolution. Neverthelees equetion (30) appears to overestimate “the
a.c'bual incresse for the true bod.ies of revolution tested.

~

f '.cémvsmss

1. Four releated methode and a general method fer the study of three—
dimensional exially symmetric compressible flow by means of the linear
perturbation theory are presented. In each case the properties of the
ccmpressible flow are obtained frcm those of & correspcnding incompressi—
ble flow. Fach of the methods possesses certain adventeges over the
others. For example, in method II the body shape, size, and orientation
are the same in the corresponding incompressible flow as in the com—
pressible flow; wherees in method IV the streamline fields are entirely
simiiar, the incompressible field being obteined by a contraction of the
compressible fleld in the radial direction. Methods I, II, and IIT are
limited to very slender bodies; whereas method IV may be a.pplied. to bodies
of moderate thickness. :

2. By means of each of ‘bhese rour method.s 1t is ::'ound 'b.hat the pres—
sBure ccefficient at the surface of a very slend.er streamline body of revo—
lution placed in 2 uniform streem of ccmpressible fiuid is nearly indeperd—
ent of the Mech number, being entirely independent of the Mach number in
the limiting case of zero thickness. This result is invalid near a stag—
natlon point and 1ts application is therefore usually limited to the
central portion of the body. For a prolate spheroid the variation of the
peak pressure coefficient with Mach number is given by the formule

(Pmax) - 1og(1—M)
(Pmax) 1og(t/1)° + 2(1-log2)

"and this result may be used for bodies of moderate thickness (thickness
ratio less then 0.30). For very slender bedies the second term is neg—
ligible while for a thickness ratio of 0.2 the incresse in the pressure
ceefficient is about half that for a two-dimensionel body.
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-3, Experimental data for bodles of revolution without wings or other
protuberances show nearly. cons’tant. or slowly rising pressure coefficient
as the Mach number increases. -The rise 1s ususlly less than that pre—
dicted by equation (30). Experimental data for bodies of revolution
* with -wings show nearly conastent or slowly rising pressure coefficient
. far from the wing but rapidly risirg pressure coefficient near the wing,

“the rise agreeing with that pred.icted. for two—d.imensiona.l bodles.

h On the fuselaga of an a‘.l,rpla.ne nea.r the wing the presaure coeffi-
cient is influenced more by the wing than by the fuselage and, at such
points, the pressure—coefficient variation is best represent by the

1L/ T = M2 law appropriate to two~dimensional flow. Since the peak
pressure coefficient usually occurs near the wing, the veriation of peak
preasure coefficient for a wing-—fuselage ceibination is best represented

by the 1/J/1 < law. On the other hand, at points on the fuselage

' far from the. wing and not close to & stasna.tion point the pressure
coefficient is nearly constant. In order to obtain an estimate of the
-rise in the pressure ccefficient, tlie result for the peak pressure coeffi—
clent given by equation (30) may be used.

Ames Aerona.utical La.'boratory, E
Nationel Advisory Committee for: Aerona.utics ’
‘Moffett. Field, Ca.lii'., L_ia,y 13, 1946.

-l
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APPENDIX
PROLATE SPEEROID — INCOMPRESSIBLE FLOW

Consider a prola;te sphercid lmmersed in a 'm:.iform str:é_am of Incom—
pressible fluld whose velocity at a large distance from the body is Vg

in the direction of the positive x—axls. Suppose the sphercid to be .
located with its center at the origin and its major axls along the x—axie.
Let ¢ dencte the distance of elther focus from center of spherold and
¢, 1 denote the elliptic coordinates for a meridian section, so that the
following relations between the coordinates are satisfled: ’

x = c cosh & com v

. ?=c ginh € sin

Also let | “
& = ¢ cosh £* = semimajor axis of ellipse forming meridian sectlon

b = ¢ sinh £* = memiminér axis of ellipse forming méri¢ian- section

1 . .
e =, /1 — ('b/e.)2 =2 Tosh E% eccentricity of ellipse forming meridian
. & ;os S : gection

e .

where t* 1s the valus of £ on the ellipse forming meridian sectionm.
Then the velocity potemtisl for this flow is given in Sectlion 105 of
Lenb's Hydrodynemics (reference 15) .in the form

L3

2Voc 1 cosh £ + 1 .
@ = Vox — — 5, ¢0s 1 | cosht log -1 (ar)
— - 1-_?5 2 : cosh § —~ 1,

If the equations which give =x end r in terms of & -and 1 are
differentiated partially with respect to x and r, it is found that

bﬁ;_an ginh £ cos 1

-a_;t- T dr - c_(coshzg — cos2 1)

- O an cosh £ sin 7

or ox - c(cosh®E — cos® 7)
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The velocity compoment in the direction of the x-axis is given by

- Bcp L )
" xT%a H %=

When equation (AL) is used, it is easily found that

v _ A {l coshg + 1 2 cosh § } (A2)
= - - 4 1o
x ° “108'3-._":3_...3_‘2_ gcosh&--l _cosh £E— cos® 7,
18 l-e2?
Similerly, the radial velocity coqné’onent is given by
14

and 1t 1s easily found that

2Vpo 8in 1 cos 1 .

vr = (A3)

(10@1’19 2:2> (c:osl:t2 g - cos.‘"l 11) sinh &

At the surface of the spheroid equatioﬁs (A2) end (A3) reduce to

l+e 2o o
v ¥ log - 5 5 .
{T_I_n 1 - l-e 1-e2 cos n _ ; (ak)
l-e l—-e
V. 2ae'sin'q cos 1

r

= (a5)

1-e2 cos? 7 )'b

-
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It follows that

lim Vx*/Vo -1
bfa—>0 (b/a)® log('b/z_:.)z

. . log(l+e) - log(l—e) -——3
= - 1im ' l-e cos 7

e—> 1 (1-02) log(l—-ea)[log(l+e) ~ log(i-e)} — 26 log(i-e=)

1 2 }
-] 4 —— logilte) — ———
= — 14im log(l-e) & ) ) 1-e2 cos? q

unless 1.=0 or =n. Also

1im  V*/Vo = 1 + zl(b/a)a log(b/a)}2

b/a-->0 (v/2)2
l+e . 2e 1 ; l+e
. . + T(1—e2 2}1 ngit® 2
- um B tiegoan g * 30 s Mg o loslieT)
e—->1 (1-2){10g(1+e) ~ log(i-e)] — 2e
: .- DL S l '. "2 y .'.2 o l‘l'O b . :
(1~e)1og(1—e)+={1-82)1log(1-62)1og— ~ (1+e)ilog(i+e)+
= lim 2 1-o 1-e2 cos® g
e—>1 (1-e®)[1og(i+e) — log(i~e)] — 2o

e

- ~2log 2 + 2c8c® n

-

= log2 — csc? q

unless 7 = 0 or =. If terms of higher order than ('i:»/a.)2 are neg—
lected i1t follows that, except for =0 or =,
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T* 1 (‘b )2 ('b 2 2 (b )2'
A— =] =~ - 1 -} - - -
- s \a og a) (cec n — log 2) . | (A6)_

In the same way it follows that T - : "
: 3

lim Ve* /o lim 2 ®8in 7 cos 7

b/a—>0 =

bfa o>1 (l-*e cos n){(lv-e )[log(l+e) -—log(l—e) 1- 2e
2sin 7 co__é_s n "

unless 1 = O or x, Thus if-'_be:_t"ms of higher order than (b/a) are’
neglected, there 4ip. cbtained, exckbpt for 7 =0 or =,

V¥ /Vo = = (b/a) cot n (A7)

If 1% is remembered that the pressure coefficlent at the surface
of the spheroid is given by

P* = 1~ (V*/V,)2 = (V5 /7,)2
and if texms of higher order than .'_(_‘b'/a.)"2 | g.rensgloqted. 1t follows that

e ~ e ) -t
- - B PR

P* = (b/a)? log(b/a)® + {cot® n + 2-—2 log 2)(b/a)2 (a8)

unless 7 =0 or w.

For somé purposes 1t is cbn;'enieﬁt témgi've'expressions for _V /Vo,
and P* in terms of x 1instead of 7 in vhich case equations (AG) ard -

T (e (- (e )
SO NET I R

-
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Figure 11.- Kollsman pitot-etatic tube F.S.S.C. No. 88-T-2950.
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